Differential Cryptoanalysis of the Full 16-round DES

Adi Shamir, Eli Biham

Background

Background

: old attacks \& limits

- Charm \& Evertse : reduced variants of DES (6-round attack in 2^{54}) - But not applicable for 8 or more rounds DES
- Davies : Known Plaintext Attack (8-round attack in 2^{40}) - But not applicable for 16-round Full DES
- Most successful attack - Difiterential Crypteanalysis (15-round attack faster than exhaustive search, but not in 16-round Full DES also)

Enhanced this Differential Cryptoanalysis to 16 -round DES with less prob.

Differences

: New attack \& Advantages

- Breaking 16-round Full DES in 2^{36} plaintext with 2^{37} time.
- Even if the key changes frequently, the attack will have same complexity. But for example, in bank authentication schemes, this attack has to act quickly before the key changes... \rightarrow the (plaintext-ciphertext) pairs' pool for attack needs to be encrypted with the same keys
- Needs negligible space (memory) because it uses no counter.

How to analyze DES?

Differential Cryptoanalysis

: First idea - DC characteristic

$$
P^{*}=(\psi, 0)=\left(19600000_{x}, 00000000_{x}\right)
$$

$$
\begin{gathered}
f(\psi)=00 \cdots 00 \\
S_{1} \times S_{2} \times S_{3} \\
\end{gathered}
$$

How can I use it??

: repeat 6.5 times

- If input = output, very useful DC characteristic !!
- Let's compare with exhaustive search (brute-force)
- Exhaustive search : 2^{55} complex

- How many rounds can we use it to make lower complex than exhaustive search??

$$
\rightarrow \frac{1}{234}^{6} \approx \frac{1}{2^{47.2}} \& \frac{1}{234}^{7} \approx \frac{1}{2^{55.1}} \text { so just } 6 \text { times!! }
$$

Differential Cryptoanalysis

: next step - one additional round \& 2-R attack

- We solved 13 rounds with $2^{-47.2}$ prob.
- In 16-round Full DES, there are 3 rounds left..
- We need to append 3 rounds without making the prob lower...
\rightarrow one additional round \& 2-R attack

One additional round

: using plaintext pairs

1. Make random plaintext : P
2. Let $P_{i}=P \oplus\left(\alpha_{i}, 0\right)$ and $\overline{P_{i}}=P \oplus\left(\alpha_{i}, \psi\right)$ for $\alpha_{i}=A B C 00000$ format (Because of the format of α, number of α is 2^{12})
3. Let $P=P_{1} \mid P_{2}$ and P_{2} is the right block of plaintext P.
4. Then, P_{2} are all the same for P_{i} and $\overline{P_{i}} \rightarrow$ output difference is constant
5. When I choose any P_{i}, there must be one j that satisfies $\alpha_{j}=\alpha_{i} \oplus \alpha_{k}$

One additional round

: using plaintext pairs

- With one plaintext P, we can make 2^{12} pairs which matches the condition

- With one P, we can have $2^{12} \times 2^{-47.2}=2^{-35.2}$ prob that satisfies the whole Differential Cryptoanalysis !!

But.

: can't know intermediate value of crypto system

- We should catch the right pair that satisfies our characteristic.
- So we need to brute force it !! $\rightarrow 2^{24}$ (whole pairs)
- right block of the ciphertext $=f(\psi)$
- Needs to be $A B C 00000$ format
- $2^{24} \times 2^{-20}=2^{4}$ candidates

Probability calculating

: how many plaintext will be..??

- We must consider 1, 15 rounds.
- 1,15 round $\rightarrow S_{1}, S_{2}, S_{3}$ possible outputs' prob $\rightarrow \frac{14}{16} \times \frac{13}{16} \times \frac{15}{16}$
- In addition, when we analyze the S-Box, the average of probability of the valid input - output pair is about $\frac{8}{10}!$!
- So in result, number of possible plaintext : $2^{4} \times\left(\frac{14}{16} \times \frac{13}{16} \times \frac{15}{16}\right)^{2} \times\left(\frac{8}{10}\right)^{8} \approx 1.19$

How to find key?

Key schedule

: not so complex..

라운드	필요한 S 박스에 영향을 주는 키비트 위치													
1 (18비트)	105134604917335729194233526254458													
15 (18비트)			262	501136	[33 4944 [18		18		253558195142			41	60	9
16 (24비트)	18	59	4235	7254136	1017	27		5011	43	3433	521			44352649

So how many plaintext?

: Comprehensive calculation

- One P per right plaintext pairs $\rightarrow 1.19$
- One plaintext pairs per key candidates $\rightarrow 0.84\left(2^{52} \times \frac{2^{-32}}{0.8^{8}} \times\left(\frac{2^{-12}}{\frac{14}{16} \times \frac{13}{16} \times \frac{15}{16}}\right)^{2}\right)$
- One key candidates per whole key candidates $\rightarrow 2^{4}$
- So number of key candidates per one P is $1.19 \times 0.84 \times 2^{4} \approx 16$

Finding key

: 1-16 round key bit's relation

- First round \& 16th round are related closely (key schedule)
- There are duplicated key bits
- We can recover 13bit with bruteforce attack!!

Summary

: how complex is it?

- Complexity of the characteristic is $\frac{1}{234}^{6}=2^{47.2}$
- 2^{12} pairs per one Plaintext $\rightarrow 2^{12} \times 2^{-47.2}=2^{-35.2}$
- So we need more than 2^{35} plaintext !! \rightarrow remaining pairs : $2^{35} \times 1.19 \approx$ $2^{35.25}$
- This leads to 58% attack success !!!

