Differential Cryptoanalysis of the Full 16-round DES Adi Shamir, Eli Biham

2022350222 Won Sangyun

Background

Background

- : old attacks & limits
- applicable for 8 or more rounds DES

for 16-round Full DES

than exhaustive search, but not in 16-round Full DES also)

Enhanced this Differential Cryptoanalysis to 16-round DES with less prob.

• Charm & Evertse : reduced variants of DES (6-round attack in 2^{54}) - But not

Davies : Known Plaintext Attack (8-round attack in 2⁴⁰) - But not applicable

Most successful attack - Differential Cryptoanalysis (15-round attack faster)

Differences

: New attack & Advantages

- Breaking 16-round Full DES in 2^{36} plaintext with 2^{37} time.
- Even if the key changes frequently, the attack will have same complexity. But for example, in bank authentication schemes, this attack has to act quickly before the key changes... \rightarrow the (plaintext-ciphertext) pairs' pool for attack needs to be encrypted with the same keys
- Needs negligible space (memory) because it uses no counter.

How to analyze DES?

How can use it?? : repeat 6.5 times

- If input = output, very useful DC characteristic !!
- Let's compare with exhaustive search (brute-force)

- Exhaustive search : 2^{55} complex •
- •

$$\rightarrow \frac{1}{234}^{6} \approx \frac{1}{2^{47.2}} \& \frac{1}{234}^{7} \approx \frac{1}{2^{55.1}} \operatorname{soju}$$

How many rounds can we use it to make lower complex than exhaustive search??

ist 6 times!!

Differential Cryptoanalysis : next step - one additional round & 2-R attack

- We solved 13 rounds with $2^{-47.2}$ prob.
- In 16-round Full DES, there are 3 rounds left..

- We need to append 3 rounds without making the prob lower...

One additional round : using plaintext pairs

- 1. Make random plaintext : P
- 2. Let $P_i = P \oplus (\alpha_i, 0)$ and $\overline{P_i} = P \oplus (\alpha_i, \psi)$ for $\alpha_i = ABC00000$ format (Because of the format of α , number of α is 2^{12})
- 3. Let $P = P_1 | P_2$ and P_2 is the right block of plaintext P.
- 4. Then, P_2 are all the same for P_i and $P_i \rightarrow$ output difference is constant

5. When I choose any P_i , there must be one j that satisfies $\alpha_i = \alpha_i \oplus \alpha_k$

One additional round : using plaintext pairs

With one plaintext P, we can make 2^{12} pairs which matches the condition \bullet

• With one P, we can have $2^{12} \times 2^{-47.2} = 2^{-35.2}$ prob that satisfies the whole Differential Cryptoanalysis !!

But.

- : can't know intermediate value of crypto system
- We should catch the right pair that satisfies our characteristic.
- So we need to brute force it $!! \rightarrow 2^{24}$ (whole pairs)

- right block of the ciphertext = $f(\psi)$
- Needs to be *ABC*00000 format
- $2^{24} \times 2^{-20} = 2^4$ candidates

Probability calculating

- : how many plaintext will be ..??
- We must consider 1, 15 rounds.
- 1, 15 round $\rightarrow S_1, S_2, S_3$ possible outputs'
- is about $\frac{8}{10}$!!

prob
$$\rightarrow \frac{14}{16} \times \frac{13}{16} \times \frac{15}{16}$$

• In addition, when we analyze the S-Box, the average of probability of the valid input - output pair

• So in result, number of possible plaintext : $2^4 \times (\frac{14}{16} \times \frac{13}{16} \times \frac{15}{16})^2 \times (\frac{8}{10})^8 \approx 1.19$

How to find key?

Key schedule : not so complex..

라운드					1 1	필요	한	Sਖ਼ੋ	나스	에 여	경향	을 2	주는	키비	<u></u> 5	위
1 (18비트)				10	51	34	60	49	17	33 5	$57\ 2$	9 19	9 42	3 35	26	2
15 (18비트)			26	2	50	11	36	33	49	44	18	25	35 5	8 19 8	51 4	42
16 (24비트)	$\left 18 \right[$	59	42 :	3 5'	7 25	5 4 1	l 36	10	17	27	50) 11	43] 34 33	3 [5	52
	1 (18비트) 15 (18비트)	1 (18비트) 15 (18비트)	1 (18비트) 15 (18비트)	1 (18비트) 15 (18비트) 26	1 (18비트) 10 15 (18비트) 26 2	1 (18비트) 10 51 15 (18비트) 26 2 50	1 (18비트) 15 (18비트) 26 2 50 11	1 (18비트) 15 (18비트) 26 2 50 11 36	1 (18비트) 15 (18비트) 26 2 50 11 36 33	1 (18비트) 15 (18비트) 15 (18비트) 10 51 34 60 49 17 26 2 50 11 36 33 49	1 (18비트) 15 (18비트) 15 (18비트) 10 51 34 60 49 17 33 5 26 2 50 11 36 33 49 44	1 (18비트) 15 (18비트) 15 (18비트) 10 51 34 60 49 17 33 57 2 26 2 50 11 36 33 49 44 18	1 (18비트) 15 (18비트) 15 (18비트) 10 51 34 60 49 17 33 57 2 9 19 26 2 50 11 36 33 49 44 18 25	1 (18비트) 15 (18비트) 15 (18비트) 10 51 34 60 49 17 33 57 2 9 19 42 26 2 50 11 36 33 49 44 18 25 35 5	1 (18비트) 10 51 34 60 49 17 33 57 2 9 19 42 3 35 15 (18비트) 26 2 50 11 36 33 49 44 18 25 35 58 19 5	1 (18비트) 10 51 34 60 49 17 33 57 2 9 19 42 3 35 26 15 (18비트) 26 2 50 11 36 33 49 44 18 25 35 58 19 51 4

- Applying this a little bit, the number of bits of keys involved in the first and 15 rounds is 60, but excluding duplicates, it is 28.
- In addition, the number of bits of the key which are used in 16 round is 24.
- So we can calc (24 + 28) = 52 bits of the key !!

So how many plaintext?

- : Comprehensive calculation
- One P per right plaintext pairs \rightarrow 1.19
- One key candidates per whole key candidates $\rightarrow 2^4$

• So number of key candidates per one P is $1.19 \times 0.84 \times 2^4 \approx 16$

• One plaintext pairs per key candidates $\rightarrow 0.84 \left(2^{52} \times \frac{2^{-32}}{0.8^8} \times \left(\frac{2^{-12}}{\frac{14}{16} \times \frac{13}{16}} \right)^2 \right)$

Finding key

- : 1-16 round key bit's relation
- First round & 16th round are related closely (key schedule)
- There are duplicated key bits

• We can recover 13bit with bruteforce attack !!

1 round's S3 box & 16 round's S1 box have common bits

				K_{16}										
			<i>i</i> e	ft KE	Y R	egiste	er (C)	Rig	ht K	EY R	legist	er (D)		
		4	L	S_2	S_3	S_4	ETC	S_5	S_6	S_7	S_8	ETC		
K_1	S_1			2	1	1	2	-	-	-	-	-		
	S_2		2	-	1	2	1	-	-	-	-	-		
	S_3		2	-	-	3	1	-	-	-	-	-		
	S_4		2	3	1	-	-	-	-	-	-	-		
	ETC	-	-	1	3	-	-	-	-	-	-	-		
	S_5	-	-	-	-	-	-	-	1	2	2	1		
	S_6	-	-	-	-	-	-	3	-	2	1	-		
	S_7	-	-	-	-	-	-	-	2	-	2	2		
	S_8	-	-	-	-	-	-	2	3	-	-	1		
	ETC	-	-	-	-	-	-	1	-	2	1	-		

Summary

: how complex is it?

Complexity of the characteristic is -

• 2^{12} pairs per one Plaintext $\rightarrow 2^{12} \times 2^{-47.2} = 2^{-35.2}$

- So we need more than 2^{35} plaintext $!! \rightarrow$ remaining pairs : $2^{35} \times 1.19 \approx$ 235.25
- This leads to 58% attack success !!!

Rounds	Chosen	Analyzed	Complexity	Best Previou		
	Plaintexts	Plaintexts	of Analysis	Time	Spa	
8	2^{14}	4	2 ⁹	2 ¹⁶	2^{2}	
9	2 ²⁴	2	2 ³²	2^{26}	230	
10	2 ²⁴	2 ¹⁴	2^{15}	2^{35}	-	
11	2 ³¹	2	2^{32}	2 ³⁶	1 -	
12	2 ³¹	2 ²¹	2 ²¹	2 ⁴³	-	
13	2 ³⁹	2	2^{32}	244	2^{30}	
14	2 ³⁹	2 ²⁹	2 ²⁹	251	_	
15	247	2^{7}	2 ³⁷	2^{52}	24	
16	247	2^{36}	2 ³⁷	2^{58}	-	

$$\frac{1}{234}^{6} = 2^{47.2}$$

